Search results for "motion aftereffect"
showing 3 items of 3 documents
Parallel Adaptation to Spatially Distinct Distortions
2020
Optical distortions as a visual disturbance are inherent in many optical devices such as spectacles or virtual reality headsets. In such devices, distortions vary spatially across the visual field. In progressive addition lenses, for example, the left and right regions of the lens skew the peripheral parts of the wearers visual field in opposing directions. The human visual system adapts to homogeneous distortions and the respective aftereffects are transferred to non-retinotopic locations. This study investigates simultaneous adaptation to two opposing distortions at different retinotopic locations. Two oppositely skewed natural image sequences were presented to 10 subjects as adaptation s…
Visual aftereffects and sensory nonlinearities from a single statistical framework
2015
When adapted to a particular scenery our senses may fool us: colors are misinterpreted, certain spatial patterns seem to fade out, and static objects appear to move in reverse. A mere empirical description of the mechanisms tuned to color, texture, and motion may tell us where these visual illusions come from. However, such empirical models of gain control do not explain why these mechanisms work in this apparently dysfunctional manner. Current normative explanations of aftereffects based on scene statistics derive gain changes by (1) invoking decorrelation and linear manifold matching/equalization, or (2) using nonlinear divisive normalization obtained from parametric scene models. These p…
Functional correlate and delineated connectivity pattern of human motion aftereffect responses substantiate a subjacent visual-vestibular interaction.
2018
The visual motion aftereffect (MAE) is the most prominent aftereffect in the visual system. Regarding its function, psychophysical studies suggest its function to be a form of sensory error correction, possibly also triggered by incongruent visual-vestibular stimulation. Several observational imaging experiments have deducted an essential role for region MT+ in the perception of a visual MAE but not provided conclusive evidence. Potential confounders with the MAE such as ocular motor performance, attention, and vection sensations have also never been controlled for. Aim of this neuroimaging study was to delineate the neural correlates of MAE and its subjacent functional connectivity pattern…